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Semi-canonical quantisation of dissipative equations 
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Received 27 May 1988 

Abstract. In order to avoid the known problems of canonical quantisation of the dissipative 
equation mx + ax” + a  V / a x  = 0 a modified approach is proposed. It is based on the 
classically conserved quantity E = mx2/2  + V ( x )  + a x” d x  rather than on a Hamilton 
function. Linear, quadratic and cubic damping ( n  = 1, 2 and 3) are discussed explicitly. 
For n = 1 and n = 3 normalisable (one-particle) states cannot be stable. However, for 
quadratic friction, which is classically a reversible process, we show by the example of the 
harmonic oscillator that stable normalisable eigenstates can exist. 

1. Introduction 

The Lagrange and Hamilton formulations of classical mechanics are important and 
also of practical interest as they enable the derivation of the equations of motion and 
conservation laws of more complicated systems. In particular, classical Hamilton 
functions form the basis of canonical quantisation which, for conservative systems, 
leads to the well known and, in non-relativistic quantum mechanics, successful 
Schrodinger equation. 

However, the quantisation of even the simplest dissipative equation of motion has 
not been solved satisfactorily, despite many efforts since the early 1940s [ 11. Besides 
canonical quantisation, non-linear methods (which do not satisfy the superposition 
principle) have also been used in the attempts to quantise dissipative systems. We 
mention Kostin’s non-linear Schrodinger equation [2] and the articles by Gisin [3] 
and Razavy [4]. In [3] non-linear terms are added ad hoc to the Hamilton operator, 
and the dissipative system decays into the lowest state excited at time t = 0. A nice 
feature is that all coherent states of the harmonic oscillator decay into the ground 
state. Razavy arrives at the conclusion [4] ‘that there is no consistent way of quantising 
classical systems in the Hamiltonian form’. Quantising a damped system in a gen- 
eralised Hamilton-Jacobi formalism, he finds a non-linear wave equation which is 
identical with the Schrodinger-Langevin equation studied by Kostin [2]. 

The main goal of this paper is to propose and to study a simple modified model 
for canonical quantisation of dissipative equations. In $ 2 we summarise some known 
results on Lagrange functions of classical dissipative systems and include a few 
observations. Section 3 contains the principal part, an attempt to quantise the classically 
conserved sum of the particle’s kinetic and potential energy and its energy ‘exchange’ 
with the frictional medium. The resulting Schrodinger equation is studied in $ 4  for 
linear, quadratic and cubic friction. After that, in 0 5 ,  Ehrenfest’s theorems are dis- 
cussed. A summary and the principal conclusion are presented in $ 6 .  
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2. Classical dissipative Lagrange functions 

It is known (probably more among mathematicians than among physicists) that for a 
single equation of motion 

G = f + g ( x , x ,  t ) = O  ( l a )  

there always exist an integrating function f and a Lagrange function 9 such that the 
equation fG = 0 can be derived from 2 [ 5 ] :  

d a 2  a 2  
d t  a i  ax 

fG = - = 0, 

f is a solution of the equation 

a lnf  dg a l n f  a lnf  g-+-=-x+-* 
ax ax ax a t  

For the common example, linear friction, having the equation of motion 

mx + ax +dV/ax = 0 (2a) 

one can find 

f =fi = exp(at /m) 2 ' = 9 1 = ( T -  V)f1 T = mx2/2. (2b) 

For the equation 

mx+ a i 2 + a v / a x  = 0 

with quadratic friction a possible choice of f  and 2 is 

2 = 22 = Tf2 - f2 - dx. (3b) I aaxv f =fi = exp(2ax/m) 

The results (2b) and (36) can be easily generalised for mixed, linear and quadratic 
friction 

mx + al( t)x + az(x)xz +a V/ax = O (4a) 

with t-dependent a1 and x-depdendent a2: 

From ( 1  c )  one can see that for frictional terms ax", n # 0, 1,2,  the integrating function 
f necessarily depends on 1. 

One problem in canonical quantisation of dissipative equations is that a classical 
Lagrange function can only be obtained by means of an integrating function J: Apart 
from the fact that the physical meaning of such a function is not clear, f is not unique, 
and hence the Lagrange and Hamilton functions are not unique either. For example, 
for the equation 

m x + a i n  = O  ( 5 a )  
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one can (with f = x-") find the Lagrange function 

2?= m%(ln x - 1) -ax  n = l  ( 5 b )  

23 = -m In x - a x  n = 2  ( 5 c )  

2?= m i ' - " / [ ( n  - l ) (n  -2)] - a x  n # 1 , 2  ( 5 4  

(equation ( 5 b )  is given in [ 6 ] ) .  The Lagrangians ( 5 b )  and ( 5 c )  are not equivalent to 
the Lagrangians (2b) and (3b) (for V ( x ) = O ) .  

The Hamilton functions H = px - 23, where p = a23/ax, corresponding to all the 
above Lagrange functions can be readily found. However, ( 5 b ) ,  (5c)  and (5d)  cannot 
be easily generalised for arbitrary potentials, and it may not always be an easy task 
to find a Lagrange function, which does not depend explicitly on time, for ( 2 a ) .  (But 
if V and a do not depend explicitly on time then a not explicitly time-dependent 
Lagrange function does exist [5].) For the three-dimensional linearly damped harmonic 
oscillator such a Lagrangian is given in [5]. 

3. Modified canonical quantisation 

Among the principal difficulties in canonical quantisation of dissipative systems we 
mention (i) contradications with the uncertainty relation for the mechanical momentum 
mx and (ii) disagreement between the quantum mechanical result for the conservative 
system ( a  = 0) and that for the dissipative equation in the limit a + 0. Problem (i) 
occurs, for example, for the Lagrangian (2b) which leads to an explicitly time-dependent 
canonical momentum. This problem has been studied extensively for the harmonic 
oscillator, i.e. the Caldirola-Kanai Hamiltonian [7 ,8] .  It seems that what is quantised 
is an oscillator with a time-dependent mass rather than a damped oscillator [9,10]. 
Problem (ii) occurs normally for Hamilton functions which, even in the limit a + 0, 
do not correspond to the energy of the particle. For example, such Hamilton functions 
arise from the Lagrange functions (5b)-(5d). We mention also the work of Dekker 
[ 111 who factorises the classical equation of motion into two first-order complex 
differential equations and constructs a complex non-Hermitian Hamiltonian. However, 
this method has been criticised [4] as the Hamiltonian is not unique and for non- 
vanishing damping does not correspond to the energy. 

Altogether the principal problem is probably that the Lagrangian of a dissipative 
equation is not the 'physical Lagrangian' [9] and the Hamilton function even in cases 
where it is a conserved quantity is not the energy. This, in our opinion, makes the use 
of the corresponding Hamilton operator in the Schrodinger equation (which supposes 
that the Hamilton operator is the energy operator and E + iA a / a t )  questionable. The 
problem may be still worse. Since friction results from the interaction between a 
'physical body' (particle) and the particles of the dissipative medium, the one-particle 
Hamilton operator of a quantal dissipative system may not exist at all. 

Having these problems in mind (and despite the eventual non-existence of the 
desired Hamilton operator) one can try to tackle the problem from another direction. 
Instead of a Hamilton function for the equation of motion 

m x +  ax" + a  V / a x  = 0 ( 6 a )  

one may search for a classically conserved energy which governs the motion of the 
particle in the frictional medium. Due to the frictional interaction the particle loses 
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to (or, more generally, exchanges with) the frictional medium the energy 

A E = a  i n + ' d t = a  x'dx. ( 6 b )  I' Ix 
The sum of A E  and the particle's kinetic and potential energies 

E =$mi2+ V(x)+AE ( 6 c )  

dE/d t=x(mf+aV/ax+ax ' )  = O .  ( 6 d )  

should be a conserved quantity. This is easily verified from 

Since E is not related to a Lagrange function we have to define a momentum p 
which is to be quantised. The simplest ansatz is to quantise the mechanical momentum 

p = m i  ( 7 a )  

a E /ax = a V/ax + ax ' ( 7 b )  

-p=aE/ax  ( 7 c )  

Since 

the choice (7a)  ensures that the equation 

yields the correct equation of motion ( 6 a ) .  In principle, one could add a function 
f(x,p)  to the right-hand side of ( 7 a ) .  Then ( 7 c )  would yield ( 6 a )  only if df/ap = 0, 
reducing f to a function of x only. But such a function cannot help to satisfy the 
equation 1 = aE/ap = p/m which corresponds to the second Hamilton equation. This 
incompatibility might be related to many-particle effects. We shall come back to this 
point in 0 5 when discussing Ehrenfest's theorems. 

Quantising ( 6 c )  and (7a)  by 

h a  p+- -  
i ax 

one obtains the 'energy operator' for the quantum mechanical motion of the particle 

H,=H,+aHi ( 8 b )  

where 

P 2  h 2  a2 
2m 2m ax2 

H,=-+ V(x) = -- -+ V(x) 

is the Hamilton operator of the corresponding conservative system and aHi ,  obtained 
from ( 6 b ) ,  ( 7 a )  and (sa) ,  gives the frictional interaction 

On observes first that Hi is a non-Hermitian operator. (A mathematically consistent 
formulation of quantal dissipation in terms of non-Hermitian complex operators has 
been discussed by Dekker [ 1 I].) Secondly, in the approach above the quantisation of 
the dissipative term is independent of V(x). This is quite different from and much 
simpler than in canonical quantisation. Finally, since the mechanical momentum mx 
is equal to the quantised momentum p, ( 7 a )  and (8a),  the uncertainty relation will 
always be satisfied. 
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In 8 4 we shall examine the Schrodinger equation 

i h 2= He$ = [ Ho + a (?-) $ n = 1,2 ,3  
a t  

for the existence of separable solutions 

$(x, t )  = Q ( X )  exp(Et/ih) 
which correspond to the stationary solutions (bound states) of real energy E in 
conservative systems. 

4. Examples 

4.1. Linear friction 

From (9a)  and ( 9 b )  one obtains the stationary Schrodinger equation 

Due to linear friction the real conservative potential gets a constant imaginary part. 
A corresponding imaginary part, up to a constant positive factor, has been obtained 
by Dekker [4, 111 for the damped harmonic oscillator by a quite different method, in 
which, however, linear friction also changes the Hermitian part of the Hamiltonian. 

From ( 9 a )  one finds the continuity equation 
2 a  

a t  m 
g+ div j = - -p  

where p ( x ,  t )  = I$(x, t)I’ and j ( x ,  t )  stand for the common one-particle density and 
current, respectively. Integrating ( lob )  over x one gets 

00 

p(x, t )  dx = -& I p(x, t )  dx. 
d t  m 

Then the probability w(t), that the particle is in a state ( 9 b )  or a linear combination 
of such states, is given by 

02 

w ( t )  = p(x, t )  dx = w(0) exp(-2at/m). ( 1 0 4  L 
A normalisable eigenstate of the Hamilton operator (8c) becomes unstable (a > 0) in 
the presence of (8d), i.e. to the real eigenvalues E of Ho there correspond complex 
eigenvalues E + a h / i m  of (8b). 

Complex potentials are used in nuclear physics to describe damping or absorptive 
effects when the target is excited to higher complicated configurations [12]. Thus the 
damping effect in (10d) is no surprise, but it may be surprising that the ground state 
to Ho also decays in the presence of a H i = a h / i m .  This can be explained in the 
following way. Let the particle at t = 0 be in an eigenstate of Ho and switch on damping. 
Then the particle will be absorbed by the dissipative medium, i.e. at large times it will 
no longer be in an eigenstate to Ho or He,  but in an eigenstate to the full Hamilton 
operator Ht of the particle and the dissipative medium. The eigenstates of Ht may be 
completely different from those of He since He does not contain the mutual interaction 
between the particles of the medium. Of course, this interpretation implies that quantal 
linear friction cannot be treated consistently in a one-particle theory. 
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4.2. Quadratic friction 

The stationary Schrodinger equation is 

h2 d 2 p  a h 2  d q  
2m dx2 m2 d x  
- -+- -+ (E  - V( X ) ) V  = 0. 

The first derivative d p / d x  in (1 1 a )  will change the eigenvalues and eigenstates of H,, 
but, in contrast to linear friction, (1 1 a)  can have stable normalisable eigenstates. This 
will now be shown for the oscillator potential 

V(X) = imw’x’. (1 lb)  

The general solution of (1 l a )  and (1 1 b )  is [ 13]t 

p ( = X-’I2 exp( - a x /  m ( cl k, 1 /4( z 2 )  + c2 k- 1/4( z’) ) 
1/2  

k =  2 E / h - a Z h / m 3  z = ( y )  x. 
4w 

C1 and C, are arbitrary constants and Mk,*l,4 are Whittaker funcfions whose asymptotic 
behaviour for Re z2+ +CO (see formulae (13.1.32) and (13.1.4) of [14]) is 

$ - k # O ,  -1, -2,. . . 

Therefore the solution (1 1 c) will not be square integrable unless k = 1 + a  or k = 1 +:, 
1 = 0, 1,2, . . . , when the Whittaker function is related to the Hermite polynomials [ 131 

(13b) 

For k = 1 + t and C, = 0 the solution (1 1 c) is normalisable as well as for k = 1 + 2 and 
C2 = 0, 1 = 0,1,2, . . . . From (1 1 c) one finds the energy eigenvalues 

I !  
Ml+l/4,-1/4(z2) = (-1)’- e ~ p ( - z ~ / 2 ) z ’ / ~ H , , ( z ) .  (21)! 

(21 + ; ) w h  + ; a ’~ i ’m-~ 
(21+3)wh +ia2h2m-3 

if k =  1 + $  
E = {  if k =  l+i 

which can be written as only one formula 
A 

E ; =  ( f + $ ) w h  +fa2h2m-3 1 = 0 , 1 , 2  ) . . . .  (13d) 

The energies are shifted against the eigenvalues of the undamped oscillator by a 
constant term. Due to the factor exp( -ax/  m )  in (1 1 c) the corresponding eigensolutions 
p ( x )  are damped slightly more for positive x and slightly less for negative x ( a  > 0) 
than the solutions for a = 0. In the limit a + 0 the eigenvalues ( 1 3 4  and the correspond- 
ing normalisable eigenstates agree with those of the undamped harmonic oscillator. 

T Note that the argument in the solution [2.273 ( l l ) ]  given in [13] should be cx2 instead of cx. 
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That stable bound states in the potential V(x) are possible for quadratic friction 
can be understood from the following analogy with classical mechanics. The term 
ax', a >0,  is dissipative only if i > O .  For negative velocities it adds energy to the 
particle. Quadratic friction is reversible and stable quantum mechanical bound states 
can exist, provided the binding potential is strong enough. 

From the results of this and the foregoing section one can easily predict the 
behaviour of a harmonic oscillator with both linear and quadratic friction a ,h / im - 
azhzm-' a/ax. The eigenstates and eigenvalues are determined by quadratic friction, 
but the eigenstates decay as exp(-alt /m).  

4.3. Cubic friction 

For n = 3 one obtains from (8d) 

ah3 a' 
im3 ax2 

(YH. = -- - 

and the continuity equation 

Without investigating how the eigenspectrum and eigenstates of Ho are changed by 
(14a) one can conclude from (14b) that the density p of a normalisable one-particle 
state decays: 

In contrast to linear friction, the decay (14c) depends explicitly on the eigenstate since 
the integrand is la+/ax12. Apart from this detail the decay can be interpreted as for 
linear damping in § 4.1. 

For frictional terms x" with exponents n > 3  the operator (8d) would yield a 
differential equation of higher than second order in x. We shall not discuss such a 
situation here. 

5. Ehrenfest's theorems 

From ( 9 a )  one finds for the time derivative A of the expectation value A of a physical 
observable A (with aA/at =0)  [ l l ]  that 

00 m 

A = i ]  + * A + d x = i j  + * ( [ H o , A ] - - [ a H i , A ] + ) $ d x .  (15a) 
d t  h -m 

The anticommutator of A with aHi stands because Hi is not Hermitian. For A = x 
one gets 

(15b) 1 P a (xp"-l+p"-lx) x=--- 
m mn 



1024 J Geicke 

and for A = p 
- . av 2a7 

F=----P ax m" 

In order that (15c) corresponds with the classical law of motion it seems necessary 
to substitute a + a / 2  in the quantisation (8d) .  The factor compensates some 'double 
counting' in the anticommutator. Since the classical equation x = aE/dp is not satisfied, 
deviations of (156) from k = p / m  can be expected in principle. Indeed, for odd n the 
eigenstateg of He are only quasistationary and their decay in time will lead to additional 
terms in A. For example, for n = 1 one finds ko = po/m where k, is the time derivative 
of the expectation value 2, in an eigenstate 9, of H o .  In consequence, with respect 
to the eigenstate + = I,!J~ exp(-at/m) of He one finds 

. Do exp( -2af/ m )  2aZ0 exp( -2at/ m )  2 =  - 
m m 

in agreement with (15b); Po is the expectation value of p in the state $o. For the 
oscillator potential (as for other potentials symmetric with respect to x = 0) one finds 
Ro = 0 such that for n = 1 the classical equation k = p / m  is fulfilled by (15b). On the 
other hand, for n = 2 (and all even n ) ,  where stationary states can exist, one can show 
by n - 1 partial integrations that p"-lx = -xp"-', and (15b) has the classically correct 
form k = p /  m. These results support the choice (7a)  of the momentump to be quantised. 
Equations similar to (15b) and (15c) were obtained for the linearly damped harmonic 
oscillator in [3] and apparently also in [ 111. (Note that in this case d V/dx - 2.) 

- -  

6. Summary and conclusion 

In classical conservative one-particle systems the Hamilton function is equal to the 
energy of the particle. This does not hold for dissipative systems. Therefore we argue 
that in principle two candidates for 'canonical quantisation' of dissipative equations 
exist: the class of (mathematical) Hamilton functions of the equation, and the class 
of quantities (or the quantity) related to the physically relevant energy of the system. 
We name the latter method 'semicanonical quantisation'. 

Canonical quantisation of classical Hamilton functions has been studied extensively 
and has met with serious difficulties that cannot yet be resolved. In view of this the 
energy-based alternative offered above should be examined seriously, and the classically 
conserved quantity ( 6 c )  seems to be a reasonable basis for this purpose. In order to 
obtain an energy operator the pure Lagrange and Hamilton formulation has been 
relinquished. In consequence, one must also define which is the classical momentum 
to be quantised. The choice ( 7 a )  is the simplest possibility. Anyhow, this heuristic 
method avoids the problems of canonical quantisation and yields plausible physical 
results for linear, quadratic and cubic friction. It is certainly interesting that our results 
show some correspondence with 1.111 as regards the non-Hermitian quantal frictional 
operator and the complex absorptive potential for linear damping. 

The principal result of our quantisation method is the indication that irreversible 
friction ( n  = 1,3) cannot be described consistently within a one-particle quantum 
theory. Namely, Hi simulates absorptive effects, and the eigenstates of He = Ho+ aHi  
dissipate into eigenstates of H,, the total Hamiltonian of the particle and the dissipative 
medium. For this reason the ground state of He also decays. On the other hand, 
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classically reversible friction ( n  = 2) can be considered quantum mechanically as the 
motion of a single particle in the external potential V ( x )  and the ‘average frictional 
potential’ a H i .  
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